Multiple recurrent neural networks for stable adaptive control
نویسنده
چکیده
It is difficult to realize adaptive control for some complex nonlinear processes which are operated in different environments and when operation conditions are changed frequently. In this paper we propose an identifier-based adaptive control (or indirect adaptive control). The identifier uses two effective tools: multiple models and neural networks. A hysteresis switching algorithm is applied to select the best model. The adaptive controller also has a multi-model structure. We introduced three different multi-model neuro controllers. The convergence of the neuro identifier, switching property and the stability of neuro control are proved. Numerical simulations are given to illustrate the performances of multiple neural identifiers and neural adaptive control on a pH neutralization process. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Stable Adaptive Control with Recurrent Neural Networks
In this paper, stable indirect adaptive control with recurrent neural networks is presented for multi-input multi-output (MIMO) square non linear plants with unknown dynamics. The control scheme is made of a neural model and a neural controller based on fully connected RTRL networks. On-line weights updating law, closed loop performance, and boundedness of the neural network weights are derived...
متن کاملStable Adaptive Neural Control of a Robot Arm
In this paper, stable indirect adaptive control with recurrent neural networks (RNN) is presented for square multivariable non-linear plants with unknown dynamics. The control scheme is made of an adaptive instantaneous neural model, a neural controller based on fully connected “Real-Time Recurrent Learning” (RTRL) networks and an online parameters updating law. Closed-loop performances as well...
متن کاملDesigning stable neural identifier based on Lyapunov method
The stability of learning rate in neural network identifiers and controllers is one of the challenging issues which attracts great interest from researchers of neural networks. This paper suggests adaptive gradient descent algorithm with stable learning laws for modified dynamic neural network (MDNN) and studies the stability of this algorithm. Also, stable learning algorithm for parameters of ...
متن کاملNeural adaptive control for nonlinear multiple time scale dynamic systems
Adaptive control of nonlinear systems has been an active area in recent years, but it is difficult to control unknown plants. A common approach to deal with this problem is to utilize the simultaneous identification technique. Neural networks have been employed in the identification and control of unknown nonlinear systems owing to their massive parallelism, fast adaptation and learning capabil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2006